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i th layer electrodynamics: A canonical approach
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Exact analytic expressions for the fields and the power dissipated in theith layer of ann-layered
structure are derived under steady-state and normal incidence via continuum electrodynamics. Via
a transmission-line analog, we recursively propagate the surface wave impedance backward. We
incorporate a canonical approach via three transfer functions that recursively propagates the field
forward. The results apply exactly for an arbitrary number of layers, composed of arbitrary uniaxial
materials, and having layers of arbitrary thicknesses. We consider examples of the electrodynamics
of a superconducting thin film atop a dielectric and backed by a normal metal as a function of the
thickness of the dielectric. ©1999 American Institute of Physics.@S0021-8979~99!05215-9#
g

g
in
on
-
es
ll’s
n

e

ti
r
,
th

s
s.

m
fie
e

ge
o
f

e
se
k

to
r a

sfer
th-
in
e
as

in

y for
ary

trix

nse-
ce,

on-
t

f

ty

F

I. INTRODUCTION

Analytic solutions for the electrodynamics, includin
both the fields and the fractional power dissipation of theith
layer, of an n-layer stratified structure has been a lon
sought-after effort. The optics literature has a formalism
volving matrix methods which yields the net transmissi
and reflection~or dissipation!.1 The usual approach for sys
tems involving only a few layers, however, is to bypass th
matrix methods and instead resort to the familiar Maxwe
equations and explicitly solving or making assumptio
about the boundary condition at each layer.2–12The fields are
obtained and then integrated to obtain the pow
dissipation.2,3 Early attempts4–8 at the calculation of the
transmission of fields and power across a superconduc
film of thicknessd, make the crude approximation that fo
d!dA , wheredA is the attenuation depth of a field in a film
the current density is constant throughout the film and
impedance at the incident surface~Z! is Z51/sd. As we
shall see, the effect of these two approximations implie
violation of the first law of thermodynamics. As in Ref
4–8, other work9 uses without proof this sameZ for their
value ofd. These authors then claim to ‘‘calculateexactlythe
transmission of a normally incident plane wave~emphasis
added!,’’ 9 but do not express the applicable range ofd in
terms of the impedance mismatch10 or justify the application
to their particular film thickness. Later work on a single fil
instead assumes that ‘‘the spatial average of the electric
in the film is ~given by the electric field at the center of th
film!,’’ 11 an approximation which breaks down at lar
thickness. Other works use a transmission line analog in
der to compute the surface wave impedance exactly, and
all d.2,12,13 The absence of an exact solution for the pow
dissipated in each region applicable for all film thicknes
for even a single film14 speaks of the need for the wor
herein.

a!Present address: Department of Physics, Colorado State University,
Collins, CO 80523. Electronic mail: pbeeli@lamar.colostate.edu
1510021-8979/99/86(3)/1514/4/$15.00
-
-

e

s

r

ng

e

a

ld

r-
or
r
s

II. SURFACE WAVE IMPEDANCE RECURSION
RELATION

While retaining a transmission line analog in order
exactly obtain the surface wave impedance, we solve fo
general boundary condition once and then obtain tran
functions which have application to each layer. This me
odology provides exact analytical solutions to the fields
each layer of ann-layer stratified structure. As such, it can b
used to compute the power being transmitted/reflected
well as the power dissipating ineach layer ~and not merely
the net dissipation1!. This feature is important to ascerta
nonlinear behavior as a greater power density in theith layer
often correlates with nonlinearities in theith layer’s material
parameters. These results are canonical in that they appl
an arbitrary number of layers being composed of arbitr
uniaxial materials~having planar isotropy! with arbitrary
thicknesses. Our approach is also simpler than the ma
methods familiar to standard optics texts.1 We begin with
knowledge of the material parameters~e.g.,g i anddi , where
di is the thickness of theith layer andg i5a i1 j b i is the
familiar propagation constant for mediumi! and by recalling
that Ampere’s law and Lenz’s law mandate that theH andE
fields, respectively, are continuous at each interface. Co
quently, the ratio of these fields, called the wave impedan
will also be continuous everywhere. Using a transmissi
line analog, we determine the~complex! wave impedance a
the ith surface (Zi) to be13

Zi5h i~Zi 11Mi1h iNi !/~h iM i1Zi 11Ni !, ~1!

for i 5n21,..., 1, where h i is the intrinsic impedance o
mediumi and is given byh i5 j vm i /g i5Am i /eci, whereeci

is the complex permittivity15 @eci[e i(12 j s i /e iv)#, Mi

5coshpi1cosqi , Ni5sinhpi1j sinqi , pi52a idi , and qi

52b idi . Zn[hn . Equation~1! holds quite generally, and in
practice, various limiting forms ofg andh can be expressed
in terms of the conductivity, permeability, and permittivi
for metals,15 insulators,15 dielectrics,15 semiconductors, and
superconductors.13
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III. H-FIELD RECURSION RELATIONS

In general, theith layer has a forward (Ai) and a refluent
propagating complexH-field amplitude~in phasor notation!.
These fields combine to form a net field at the incident s
face of theith layer given byTi . We can describe the mag
nitude of the forward field as it propagates some distancd
within the ith layer by

uAi~x5x81d!u5uAi~x5x8!ue2da i ~2a!

for i 51,...,n. Continuity of the fields mandates that,2

U Ai~xi
1!

Ai 21~xi
2!
U5U 11Zi /h i

11Zi /h i 21
U,

for i 51,...,n where the1 ~2! superscript denotes the infin
tesimal displacement to the right~left! of the boundary sepa
rating thei21th layer from theith layer located atxi ~assum-
ing the incident wave originates on the left!. Combining this
equation with Eq.~2a!, we obtain

U Ai

Ai 21
U5e2di 21a i 21U 11Zi /h i

11Zi /h i 21
U, ~2b!

for i 52,...,n where the omission of the spatial coordinate
the forward field amplitude signifies that the forward field
to be evaluated at the incident face~i.e., the left-most end if
the field originates on the left! of the layer denoted by the
subscript. Similarly, we modify the transfer function relatin
the incident field to the tangential field2 by Eq.~2a!, to obtain

U Ti

Ai 21
U5e2di 21a i 21U 2h i 21

h i 211Zi
U, ~2c!

for i 52,...,n. From Eq.~2! we can solve for the fields ove
all space in each medium.

IV. POWER DISSIPATION IN THE ith LAYER

Next, we create a Gaussian pill box whose axis
aligned with the incident wave vector and whose end c
are at both surfaces of theith layer. Integrating the Poynting
vector over its surface and dividing by the incident pow
(Pin), we find

Pi

Pin
5

1

h0
S uTi u2

uA0u2
R~Zi !2

uTi 11u2

uA0u2 R~Zi 11! D , ~3!

for i 51,...,n21, wherePin is given byPin5h0uA0u2/2 and
R is the real operator.@From Eq. ~3! we see that if one
models the field in the film as constant throughout the fi
and takesR(Zi 11).R(Zi), as is done in Refs. 4–9, the
uTi u5uTi 11u and negative energy would ostensibly dissip
in the ith layer.# In a straight-forward application of Eqs.~2!
and ~3! we find the fractional power dissipating in theith
layer:

Pi

Pin
5

4

h0
e2(k51

i 21 pk )
j 51

i 21 U 11Zj /h j

11Zj /h j 21
U2 1

u11Zi /h i 21u2

3FR~Zi !2e2pi
u11Zi /h i u2

u11Zi 11 /h i u2
R~Zi 11!G , ~4a!
r-

f

s
s

r

e

for i 51,...,n21. From Pn /Pin5uTn /A0u2R(hn)/h0 , we
find the fractional power in the last ornth layer to be

Pn

Pin
5

4

h0

e2(k51
n21pk

U11
hn

hn21
U2 )

j 51

n21 U 11Zj /h j

11Zj /h j 21
U2

R~hn!. ~4b!

Finally, via the relationship2 Pt /Pin54h0R(Z1)/uh0

1Z1u2, which can also be evaluated by summing over E
~4! ~i.e., SPi /Pin), we have a self-consistent method f
confirming the accuracy of Eq.~4!.

V. EXAMPLE: SUPERCONDUCTING THIN-
FILM–DIELECTRIC SUBSTRATE–BULK METAL

Because of the voluminous work on films which are s
perconducting, we consider an experimentally common
ample of a superconducting film on a dielectric substra
followed by a normal metal~sdm!. Although transmission-
line analogs have been previously applied to supercond
ing film–dielectric systems,12,16 losses in the dielectric hav
been ignored. To obtain numerical results, we consider
system to be driven at 10 GHz and take the relative per
ability and permittivity to be unity for all mediums.

Although analytic expressions for the fields and t
power dissipation of a superconducting film atop a bu
metal has been recently obtained,13 this has not been don
for the sdm structure. Regarding this basic structure, C
emuga, Barton, and Miranda17 claim, ‘‘It is obvious that the
addition of an intermediate layer to a superconducting str
ture can only have a significant effect on the propagat
properties when thickness~sic! of the buffer approaches on
quarter of the characteristic wavelength.’’ However, we n
otherwise. Figure 1 illustrates the power dissipated in e
medium ~film: solid, dielectric: dotted, and bulk meta
dashed!, as a function of the thickness of the dielectric, wh
the film is in thenormal state. The conductivity of both the
metallic film and the bulk metal is taken to be 106 Mhos/m

FIG. 1. Normalized dissipation in each of three layers of a met
dielectric–metal composite as a function of the thickness of the dielec
Inset: detail about a thickness of one-half wavelength of the dielectric.
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~d;5.0 mm!, while the loss tangent of the dielectric is 1022

~using the material descriptors of Ref. 13, this impliesl2

'3 cm, dA2'0.95 m, and dP25l2/2p'4.8 mm). The
thickness of the film is fixed at 0.1mm. For a vanishing
dielectric thickness, the data of Fig. 1 yieldPfilm /Pin'8.26
31025 and Pmetal/Pin'2.0231023, in precise agreemen
with the results from analytical expressions for a film on
metallic substrate.2,13,18The self-consistency check discuss
in Sec. IV reveals agreement to over 30 significant figu
for each of the.3500 data points considered in Figs. 1–
The results of Fig. 1 reveal that if the dielectric were r
moved, the dissipation in the bulk metal would bePt /Pin

'231023, which, except for the thicknesses near the re
nant dielectric thickness, is about2 orders of magnitude les
than the total power dissipation that occurs in the film alo
when the dielectric is present and the system is far aw
from resonance. At integer multiples of 1/2 a dielectric
wavelength, we see resonant thicknesses indicating stan
waves in the dielectric. The inset reveals that even for
modest loss tangent of 1022, the dissipation in the dielectric
can exceed that of the film and the metal ford2 nearl2/2.
We also see that at the higher-order resonances, the dis
tion in the film increases and the dissipation in the bulk me
decreases.

From Fig. 1 we also see a qualitatively similar dissip
tion profile in the dielectric and the bulk metal ford2

.l2/4. We can explain this by appealing to Eq.~2c! and by
recognizing that there are no reflections in the metal.

Next, we consider the same structure, but take the su
conductor to be in thesuperconductingstate. To maintain a
pedagogical continuity to the film of Fig. 1, we take th
complex penetration depth of the superconductor to be g
by l̃'5 mm2 i10 nm@dA'5.0mm ~i.e., the same as in Fig
1!, anddP'2.5 mm, which is also equivalent13 to specifying
R(s̃)'2 kMho/m andI (s̃)'20.5 MMho/m, whereI is
the imaginary operator#. The result of this work is shown in
Fig. 2, where—as compared with Fig. 1—an addition
structure surrounding the resonant thickness is seen.
only difference between the structures of Figs. 1 and 2 is

FIG. 2. Normalized dissipation of each of three layer superconduct
dielectric–metal composites as a function of the thickness of the dielec
Inset: detail about a thickness of one-half wavelength of the dielectric.
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dP1 is changed from;5.0 mm to ;2.5 mm. This effect is
acutely manifested in the wave impedance at each surfac
will be discussed in a subsequent publication. We note
the inset of Fig. 2 reveals that the minima in the dissipat
of the film are not coincident with the maxima of the diele
tric and the metal, as it is in the inset of Fig. 1, and that
dissipation in the superconductor sharply increases then
creases as the dielectric thickness increases through a
nance. The change ofa mere few percentin the thicknesses
of the dielectric, changes the dissipation in the superc
ductor by overtwo orders of magnitude. Curiously, the dis-
sipation in the dielectric has increased for nearly all thic
ness with this change in the phase length scale in the
and ford2'l2/2, nearly approaches the incident power. F
the range ofd2’s considered in Fig. 2, there is a sizeab
range of thicknesses where the total power dissipation
dominated by the dielectric’s.

Finally, Fig. 3, which represents the same structures
Fig. 2 except tand2c is changed from 1022 to 1027 ~corre-
sponding to a changefrom dA2'0.95 m anddP25l2/2p
'4.8 mm to dA2'95 km and dP25l2/2p'4.8 mm), re-
veals how changing the thickness of the dielectric in and
of resonance serves to couple and decouple the film to
metal. As with Fig. 2, ford250 Fig. 3 reveals thatP1 /Pin

'1.7031027 and P2 /Pin'2.0631023 in agreement with
other work.13 However, these are also the values ofP1 /Pin

andP2 /Pin at d25nl2/2 in Fig. 3.Thus, the low-loss dielec
tric couples the film and the metal at the resonant thic
nesses. This behavior isoppositeto that predicted by Ref. 17
as noted earlier. Making the dielectric more lossy inhib
this ability, especially for largen. From the inset of Fig. 3 we
see that a change ofa mere few percentin the thickness of
the dielectric changes the dissipation in the supercondu
by oversix orders of magnitudeand the total dissipation by
about two orders of magnitude. At resonance, we see tha
even though the dissipation in both the superconducting
and the bulk metal return to their values for the case wh

–
c.
FIG. 3. Normalized dissipation of each of three layer superconduct
dielectric–metal composites as a function of the thickness of the dielec
Inset: detail about a thickness of one-half wavelength of the dielectric.
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there is no dielectric, they do so only after exhibiting orde
of magnitude greater dissipation when the dielectric thi
ness is less than a couple percent smaller than the reso
value ~see the detail of Fig. 3!. From the inset of Fig. 3 we
also note a power dissipation maxima of all three mat
alscoinciding at about a couple percent less th
l2/2—behavior that is very different than that of Fig. 1.

VI. CONCLUSION

Having developed a canonical formalism for address
exact electronic transport behavior in stratified media co
posed of arbitrary materials, with arbitrary thickness, a
with an arbitrary number of layers, we find this approach
be fruitful both pedagogically and computationally, whe
the cumbersome operations of matrix methods are avoi
Some of the pedagogical fruit corrects notions about sta
ing waves in dielectrics and putative approximations ab
the surface wave impedance and the current density distr
tion in the very thin-film limit. The generalizability of this
formalism permits ready application to quantitative mate
analysis—where knowledge ofPi can assess nonlinea
effects—as well as application to a diverse set of proble
be they transmission (Pn /Pin), dissipation (SPi /Pin), or re-
flection (12Pt /Pin). Although we have only considered th
experimentally important case of normal incidence—wh
optical matrix methods admit oblique incidence—1 we pro-
vide the expressions for the dissipation in theith layer, and
not merely the net dissipation.1
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